
Operating Systems
Lecture 13

IO devices and disk
Prof. Mengwei Xu

11/22/24 Mengwei Xu @ BUPT 2

• I/O Devices
• Storage Devices

Goals for Today

11/22/24 Mengwei Xu @ BUPT 3

• I/O Devices
• Storage Devices

Goals for Today

11/22/24 Mengwei Xu @ BUPT 4

• I/O Devices (输入输出设备) are important to today’s computers

I/O Devices

• Without input devices, the machine
only repeat computations and generate
the same output

• Without output devices.. What’s the
purpose of it?

11/22/24 Mengwei Xu @ BUPT 5

• The old architecture of computer IO

System Architecture

11/22/24 Mengwei Xu @ BUPT 6

• The modern architecture of computer IO

System Architecture

11/22/24 Mengwei Xu @ BUPT 7

• Part#1: interface
• Part#2: internal structure

- Implementation specific and is responsible for implementing the abstraction the
device presents to the system.

- Complex devices could have their own CPU and memory as well.

A Simple IO Device

11/22/24 Mengwei Xu @ BUPT 8

• a status register, which can be read to see the current status of the
device;
• a command register, to tell the device to perform a certain task;
• a data register to pass data to the device, or get data from the device.

A Simple IO Device

11/22/24 Mengwei Xu @ BUPT 9

• a status register, which can be read to see the current status of the
device;
• a command register, to tell the device to perform a certain task;
• a data register to pass data to the device, or get data from the device.

A Simple IO Device

Polling is inefficient!

11/22/24 Mengwei Xu @ BUPT 10

• a status register, which can be read to see the current status of the
device;
• a command register, to tell the device to perform a certain task;
• a data register to pass data to the device, or get data from the device.

• Using interrupts instead of polling

A Simple IO Device

11/22/24 Mengwei Xu @ BUPT 11

• A DMA engine is a very specific device that can orchestrate transfers
between devices and main memory without much CPU intervention.
- To transfer data to the device, for example, the OS would program the DMA

engine by telling it where the data lives in memory, how much data to copy, and
which device to send it to. At that point, the OS is done with the transfer and
can proceed with other work.When the DMA is complete, the DMA controller
raises an interrupt, and the OS thus knows the transfer is complete.

Direct Memory Access

Without DMA

With DMA

11/22/24 Mengwei Xu @ BUPT 12

• Two complementary ways for CPU to access I/O devices
- I/O devices have their own registers (or memory)

• Memory-mapped I/O (MMIO): let memory and devices share the
physical address space.
- Most widely adopted
- Shared address bus

• Port-mapped I/O (PMIO), or isolated I/O: use specialized instructions to
R/W I/O devices
- In Intel: outb, outw, etc.

Memory-mapped I/O vs. Port-mapped I/O

11/22/24 Mengwei Xu @ BUPT 13

Storage Stack

11/22/24 Mengwei Xu @ BUPT 14

A Simple IDE Disk Driver

Polling or Interrupt?
Memory-mapped IO or port-mapped IO?

Code from xv6

11/22/24 Mengwei Xu @ BUPT 15

A Simple IDE Disk Driver

11/22/24 Mengwei Xu @ BUPT 16

• I/O Devices
• Storage Devices

Goals for Today

11/22/24 Mengwei Xu @ BUPT 17

• Why we learn the hardware characteristics? Because they help us build
better OSes and applications!
• As secondary storage to computers, storage devices are persistent.

- Unlike main memory

Storage Devices

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

1s 10,000,000s
 (10s ms)

Speed (ns): 10s-100s 100s

100s Gs-TsSize (bytes): Ks-Ms Ms-Gs

Tertiary
Storage
(Tape)

10,000,000,000s
 (10s sec)

Ts-Ps

11/22/24 Mengwei Xu @ BUPT 18

Secondary Storage

SSDs

11/22/24 Mengwei Xu @ BUPT 19

1. Magnetic disks (磁盘)
- Storage that rarely becomes corrupted
- Large capacity at low cost
- Block level random access
- Slow performance for random access
- Better performance for sequential access

2. Flash memory (闪存)
- Storage that rarely becomes corrupted
- Capacity at intermediate cost (5-20x disk)
- Block level random access
- Good performance for reads; worse for random writes
- Erasure requirement in large blocks
- Wear patterns issue

Storage Devices

Servers, workstations,
and labtops

Smartphones and tablets

11/22/24 Mengwei Xu @ BUPT 20

• Sector (扇区): the unit of transfer
• Track (磁道): ring of sectors

- ~ 1um (10-6m) wide
q Resolution of human eye: 50um
qWavelength of light is ~0.5um

• Cylinder (柱面): stacked tracks
• Head (磁头): attached to movable arms

to read data
- 2 per each platter (磁片) for each surfaces

• Storage capacity =
(head #) * (cylinder #) * (sector #) * (sector size)

The Magnetic Disk

Track

Sector

Head Arm

Arm Assembly

Platter

Surface

Surface

Motor Motor

Spindle

cylinder

Often 512 bytes

11/22/24 Mengwei Xu @ BUPT 21

• Cylinders: all the tracks under the
head at a given point on all surface

• Read/write data is a three-stage process:
- Seek time (寻道时间): position the head/arm over the proper track
- Rotational latency (延迟时间): wait for desired sector to rotate under r/w head
- Transfer time (传输时间): transfer a block of bits (sector) under r/w head

The Magnetic Disk

Sector
Track

Cylinder
Head

Platter

Seek time = 4-8ms
One rotation = 1-2ms
(3600-7200 RPM)

11/22/24 Mengwei Xu @ BUPT 22

• Cylinders: all the tracks under the
head at a given point on all surface

• Read/write data is a three-stage process:
- Seek time (寻道时间): position the head/arm over the proper track
- Rotational latency (延迟时间): wait for desired sector to rotate under r/w head
- Transfer time (传输时间): transfer a block of bits (sector) under r/w head

The Magnetic Disk

Sector
Track

Cylinder
Head

Platter

Software
Queue
(Device Driver)

Hardw
are

Controller

Media Time
(Seek+Rot+Xfer)

Request

Result

Disk Latency = Queuing Time + Controller time +
 Seek Time + Rotation Time + Transfer Time

11/22/24 Mengwei Xu @ BUPT 23

• Assumptions:
- Ignoring queuing and controller times for now
- Avg seek time of 5ms,
- 7200RPM Þ Time for rotation: 60000 (ms/minute) / 7200(rev/min) ~= 8ms
- Transfer rate of 4MByte/s, sector size of 1 Kbyte Þ

1024 bytes/4×106 (bytes/s) = 256 × 10-6 sec @ .26 ms

• Read sector from random place on disk:

Disk Performance Example

11/22/24 Mengwei Xu @ BUPT 24

• Assumptions:
- Ignoring queuing and controller times for now
- Avg seek time of 5ms,
- 7200RPM Þ Time for rotation: 60000 (ms/minute) / 7200(rev/min) ~= 8ms
- Transfer rate of 4MByte/s, sector size of 1 Kbyte Þ

1024 bytes/4×106 (bytes/s) = 256 × 10-6 sec @ .26 ms

• Read sector from random place on disk:
- Seek (5ms) + Rot. Delay (4ms) + Transfer (0.26ms) = 9.26ms
- Approx 10ms to fetch/put data: 100 KByte/sec

• Read sector from random place in same cylinder :

Disk Performance Example

11/22/24 Mengwei Xu @ BUPT 25

• Assumptions:
- Ignoring queuing and controller times for now
- Avg seek time of 5ms,
- 7200RPM Þ Time for rotation: 60000 (ms/minute) / 7200(rev/min) ~= 8ms
- Transfer rate of 4MByte/s, sector size of 1 Kbyte Þ

1024 bytes/4×106 (bytes/s) = 256 × 10-6 sec @ .26 ms

• Read sector from random place on disk:
- Seek (5ms) + Rot. Delay (4ms) + Transfer (0.26ms) = 9.26ms
- Approx 10ms to fetch/put data: 100 KByte/sec

• Read sector from random place in same cylinder :
- Rot. Delay (4ms) + Transfer (0.26ms) = 4.26ms
- Approx 5ms to fetch/put data: 200 KByte/sec

• Read next sector on same track:

Disk Performance Example

11/22/24 Mengwei Xu @ BUPT 26

• Assumptions:
- Ignoring queuing and controller times for now
- Avg seek time of 5ms,
- 7200RPM Þ Time for rotation: 60000 (ms/minute) / 7200(rev/min) ~= 8ms
- Transfer rate of 4MByte/s, sector size of 1 Kbyte Þ

1024 bytes/4×106 (bytes/s) = 256 × 10-6 sec @ .26 ms

• Read sector from random place on disk:
- Seek (5ms) + Rot. Delay (4ms) + Transfer (0.26ms) = 9.26ms
- Approx 10ms to fetch/put data: 100 KByte/sec

• Read sector from random place in same cylinder :
- Rot. Delay (4ms) + Transfer (0.26ms) = 4.26ms
- Approx 5ms to fetch/put data: 200 KByte/sec

• Read next sector on same track:
- Transfer (0.26ms): 4 MByte/sec

Disk Performance Example

Key to using disk
effectively (especially
for file systems) is to
minimize seek and
rotational delays

11/22/24 Mengwei Xu @ BUPT 27

• Sectors contain sophisticated error correcting codes
- Disk head magnet has a field wider than track
- Hide corruptions due to neighboring track writes

• Sector sparing
- Remap bad sectors transparently to spare sectors on the same surface

• Slip sparing
- Remap all sectors (when there is a bad sector) to preserve sequential behavior

• Track skewing
- Sector numbers offset from one track to the next, to allow for disk head movement for

sequential ops

• …

(Lots of) Intelligence in the Controller

11/22/24 Mengwei Xu @ BUPT 28

• 1995 – Replace magnetic media with non-volatile memory (battery backed DRAM)
• 2009 – Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory

- Sector (4 KB page) addressable, but stores 4-64 ”pages” per memory block
- Trapped electrons distinguish between 1 and 0

• No moving parts (no rotate/seek motors)
- Eliminates seek and rotational delay (0.1-0.2ms access time)
- Very low power and lightweight
- Limited “write cycles”

• Rapid advances in capacity and cost ever since!
• A 5-min video on SSD: https://www.bilibili.com/video/BV1644y157mB

Solid State Disks (SSDs)

https://www.bilibili.com/video/BV1644y157mB

11/22/24 Mengwei Xu @ BUPT 29

Read 4 KB Page: ~25 usec
- No seek or rotational latency
- Transfer time: transfer a 4KB page

q SATA: 300-600MB/s => ~4 x103 b / 400 x 106 bps => 10 us
- Latency = Queuing Time + Controller Time + Xfer Time
- Highest Bandwidth: Sequential OR Random reads

SSD Architecture – Reads

Host

Buffer
Manager
(software
Queue)

Flash
Memory
Controller

DRAM

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

NAND
NAND
NAND
NAND

SATA

11/22/24 Mengwei Xu @ BUPT 30

• Writing data is complex! (~200μs – 1.7ms)
- Can only write empty pages in a block
- Erasing a block takes ~1.5ms
- Controller maintains pool of empty blocks by coalescing used pages

(read, erase, write), also reserves some % of capacity
• Rule of thumb: writes 10x reads, erasure 10x writes

SSD Architecture – Writes

https://en.wikipedia.org/wiki/Solid-state_drive

https://en.wikipedia.org/wiki/Solid-state_drive

11/22/24 Mengwei Xu @ BUPT 31

• Actually, “Yes”, but not by much
• Flash works by trapping electrons:

- So, erased state lower energy than written state
• Assuming that:

- Kindle has 4GB flash
- ½ of all bits in full Kindle are in high-energy state
- High-energy state about 10-15 joules higher
- Then: Full Kindle is 1 attogram (10-18gram) heavier

(Using E = mc2)
• Of course, this is less than most sensitive scale can measure

(it can measure 10-9 grams)
• Of course, this weight difference overwhelmed by battery discharge, weight

from getting warm, ….
• According to John Kubiatowicz (New York Times, Oct 24, 2011)

Amusing calculation: is a full Kindle heavier than an empty one?

11/22/24 Mengwei Xu @ BUPT 32

• Pros (vs. hard disk drives):
- Low latency, high throughput (eliminate seek/rotational delay)
- No moving parts:

qVery light weight, low power, silent, very shock insensitive
- Read at memory speeds (limited by controller and I/O bus)

• Cons
- Small storage (0.1-0.5x disk), expensive (3-20x disk)

q Hybrid alternative: combine small SSD with large HDD

SSD Summary

11/22/24 Mengwei Xu @ BUPT 33

• Pros (vs. hard disk drives):
- Low latency, high throughput (eliminate seek/rotational delay)
- No moving parts:

qVery light weight, low power, silent, very shock insensitive
- Read at memory speeds (limited by controller and I/O bus)

• Cons
- Small storage (0.1-0.5x disk), expensive (3-20x disk)

q Hybrid alternative: combine small SSD with large HDD
- Asymmetric block write performance: read pg/erase/write pg

q Controller garbage collection (GC) algorithms have major effect on performance
- Limited drive lifetime

q 1-10K writes/page for MLC NAND
q Avg failure rate is 6 years, life expectancy is 9–11 years

• These are changing rapidly!

SSD Summary

No
longer
true!

11/22/24 Mengwei Xu @ BUPT 34

10 TB (2016)
• 7 platters, 14 heads
• 7200 RPMs
• 6 Gbps SATA /12Gbps SAS interface
• 220MB/s transfer rate, cache size: 256MB
• Helium filled: reduce friction and power usage
• Price: $500 ($0.05/GB)

IBM Personal Computer/AT (1986)
• 30 MB hard disk
• 30-40ms seek time
• 0.7-1 MB/s (est.)
• Price: $500 ($17K/GB, 340,000x more expensive !!)

Enterprise

11/22/24 Mengwei Xu @ BUPT 35

• 60TB (2016)
• Dual port: 16Gbs
• Seq reads: 1.5GB/s
• Seq writes: 1GB/s
• Random Read Ops (IOPS): 150K
• Price: ~ $20K ($0.33/GB)

Largest SSDs

11/22/24 Mengwei Xu @ BUPT 36

USB Drive

1GB~8GB, 2010 Up to 1TB, 2023

11/22/24 Mengwei Xu @ BUPT 37

• Disk can do only one request at a time; What order do you choose to
do queued requests?
- The scheduling can be done in OS, firmware, or both.

• FIFO Order
- Fair among requesters, but order of arrival may be

to random spots on the disk Þ Very long seeks

Disk Scheduling

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

11/22/24 Mengwei Xu @ BUPT 38

• Disk can do only one request at a time; What order do you choose to
do queued requests?
- The scheduling can be done in OS, firmware, or both.

• SSTF: Shortest seek time first
- Pick the request that’s closest on the disk
- Although called SSTF, today must include rotational delay

in calculation, since rotation can be as long as seek
- Con: SSTF good at reducing seeks, but may lead to starvation

Disk Scheduling

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

11/22/24 Mengwei Xu @ BUPT 39

• Disk can do only one request at a time; What order do you choose to
do queued requests?
- The scheduling can be done in OS, firmware, or both.

• SCAN: Implements an Elevator Algorithm (电梯算法): take the closest
request in a fixed direction of travel (reversed at the end)
- No starvation, but retains flavor of SSTF

Disk Scheduling

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

11/22/24 Mengwei Xu @ BUPT 40

• Disk can do only one request at a time; What order do you choose to
do queued requests?
- The scheduling can be done in OS, firmware, or both.

• C-SCAN: Circular-Scan: only goes in one direction
- Skips any requests on the way back
- Fairer than SCAN, not biased towards pages in middle

Disk Scheduling

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3

11/22/24 Mengwei Xu @ BUPT 41

• A process issues a syscall read()
• OS moves the calling thread to a wait queue (state=WAITING)
• OS uses memory-mapped I/O to tell the disk to read the requested

data and set up DMA so the disk can place the data in kernel’s memory
• Disk reads the data and DMAs it into main memory
• Disk triggers an interrupt
• OS’s interrupt handler copies the data from the kernel’s buffer into the

process’s address space
• OS moves the thread to the ready list
• The thread is scheduled on CPU, and returns from the read()

A Simple Read() Lifecycle

11/22/24 Mengwei Xu @ BUPT 42

• Storage Devices
• File System Abstraction

Goals for Today

11/22/24 Mengwei Xu @ BUPT 43

I/O & Storage Layers

High Level I/O
Low Level I/O
Syscall

File System

I/O Driver

Application / Service
streams

handles

registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Operations, Entities and Interface

file_open, file_read, … on struct file * & void *

we are here …

11/22/24 Mengwei Xu @ BUPT 44

Layered abstractions of I/O and storage

Application

Library

File System

Block Cache

Device Driver

Memory-Mapped I/O,
DMA, Interrupts

Physical Devices

stdio: fopen(), fclose(), fread(), fwrite()

syscall: open(), close(), read(), write()

Data block ops between storage and memory

How files and directories are organized in
memory and disk

Caching blocks in memory; write buffering,
synchronization.

Block device interface: a standard interface for different I/O
devices to R/W in fixed-sized blocks (e.g., 512 bytes).

Translate I/O abstractionsinto device-specific I/O operations

Memory-mapped I/O: maps each device’s control registers to a range of physical addresses on the
memory bus. For example, the OS knows last key pressed by keyboard in a physical address.
Direct Memory Access: copy a block of data between storage and memory.
Interrupts are needed so OS knows when I/O device completes its request (otherwise use polling).

11/22/24 Mengwei Xu @ BUPT 45

• File Descriptors – as OS object representing the state of a file
- User has a “handle” on the descriptor

Recall: C Low level I/O

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int create (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:
• Access modes (Rd, Wr, …)
• Open Flags (Create, …)
• Operating modes (Appends, …)

Bit vector of Permission Bits:
• User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

11/22/24 Mengwei Xu @ BUPT 46

• File Descriptors – as OS object representing the state of a file
- User has a “handle” on the descriptor

Recall: C Low level I/O

ssize_t read (int filedes, void *buffer, size_t maxsize)
 - returns bytes read, 0 => EOF, -1 => error
ssize_t write (int filedes, const void *buffer, size_t size)
 - returns bytes written
off_t lseek (int filedes, off_t offset, int whence)
 - set the file offset
 * if whence == SEEK_SET: set file offset to “offset”
 * if whence == SEEK_CRT: set file offset to crt location + “offset”
 * if whence == SEEK_END: set file offset to file size + “offset”
int fsync (int fildes)
 – wait for i/o of filedes to finish and commit to disk
void sync (void) – wait for ALL to finish and commit to disk

• When write returns, data is on its way to disk and can be read,
but it may not actually be permanent!

11/22/24 Mengwei Xu @ BUPT 47

• File System: Layer of OS that transforms block interface of disks (or
other block devices) into Files, Directories, etc.

• File System Components
- Naming: Interface to find files by name, not by blocks
- Disk Management: collecting disk blocks into files
- Protection: Layers to keep data secure
- Reliability/Durability: Keeping of files durable despite crashes, media failures,

attacks, etc.

Building a File System

11/22/24 Mengwei Xu @ BUPT 48

• User’s view:
- Durable Data Structures

• System’s view (system call interface):
- Collection of Bytes (UNIX)
- Doesn’t matter to system what kind of data structures you want to store

on disk!
• System’s view (inside OS):

- Collection of blocks (a block is a logical transfer unit, while a sector is the
physical transfer unit)

- Block size ³ sector size; in UNIX, block size is 4KB

User vs. System View of a File

11/22/24 Mengwei Xu @ BUPT 49

• What happens if user says: give me bytes 2—12?
- Fetch block corresponding to those bytes
- Return just the correct portion of the block

• What about: write bytes 2—12?
- Fetch block
- Modify portion
- Write out Block

• Everything inside File System is in whole size blocks
- For example, getc(), putc() Þ buffers something like 4096 bytes, even if

interface is one byte at a time
• From now on, file is a collection of blocks

Translating from User to System View

File
System

11/22/24 Mengwei Xu @ BUPT 50

• Basic entities on a disk:
- File: user-visible group of blocks arranged sequentially in logical space
- Directory: user-visible index mapping names to files

• Access disk as linear array of sectors. Two Options:
- Identify sectors as vectors [cylinder, surface, sector], sort in cylinder-major order

q Used in BIOS, but not in OSes anymore
- Logical Block Addressing (LBA,逻辑块寻址): Every sector has integer address

from zero up to max number of sectors
- Controller translates from address Þ physical position

qFirst case: OS/BIOS must deal with bad sectors
qSecond case: hardware shields OS from structure of disk

Disk Management Policies (1/2)

11/22/24 Mengwei Xu @ BUPT 51

• Need way to track free disk blocks
- Link free blocks together Þ too slow today
- Use bitmap to represent free space on disk

• Need way to structure files: File Header
- Track which blocks belong at which offsets within the logical file structure
- Optimize placement of files’ disk blocks to match access and usage patterns

Disk Management Policies (2/2)

11/22/24 Mengwei Xu @ BUPT 52

• Named permanent storage

• Contains
- Data

qBlocks on disk somewhere
- Metadata (Attributes)

qOwner, size, last opened, …
qAccess rights
• R, W, X
• Owner, Group, Other (in Unix systems)
• Access control list in Windows system

File

…

Data blocks

File descriptor
Fileobject (inode)
Position

File handle

11/22/24 Mengwei Xu @ BUPT 53

• Basically a hierarchical structure

• Each directory entry is a collection of
- Files
- Directories

qA link to another entries

• Each has a name and attributes
- Files have data

• Links (hard links) make it a DAG, not just a tree
- Softlinks (aliases) are another name for an entry

Directory

11/22/24 Mengwei Xu @ BUPT 54

• Conventions of directory
• Root directory (根目录):“/”
• Home directory (主目录):“~/cur_dir/file.txt”
• Absolute path (绝对路径):“/home/mwx/cur_dir/file.txt”
• Relative path (相对路径):“file.txt”

• Volume (卷): a collection of physical storage resources that form a
logical storage device. Could be a part of or many physical devices.

• Mount (挂载): an operation that creates a mapping from some path in
the existing file system to the root directory of the mounted volume’s
file system

mount –t type device dir

Directory

11/22/24 Mengwei Xu @ BUPT 55

Directory

mwx@Dragon21:~$ findmnt -t ext4
TARGET SOURCE FSTYPE OPTIONS

/ /dev/sda6 ext4 rw,relatime,errors=remount-ro
├─/data2 /dev/sdc ext4 rw,relatime
├─/data /dev/sdb1 ext4 rw,relatime
├─/var/lib/snapd /dev/sdc[/zl/snap/snapd] ext4 rw,relatime
└─/boot /dev/sda1 ext4 rw,relatime

11/22/24 Mengwei Xu @ BUPT 56

• What factors are critical to the design choices?
• Durable data store => it’s all on disk
• (Hard) Disks Performance !!!

- Maximize sequential access, minimize seeks
• Open before Read/Write

- Can perform protection checks and look up where the actual file resource are, in
advance

• Size is determined as they are used !!!
- Can write (or read zeros) to expand the file
- Start small and grow, need to make room

• Organized into directories
- What data structure (on disk) for that?

• Need to allocate / free blocks
- Such that access remains efficient

Designing a File System …

11/22/24 Mengwei Xu @ BUPT 57

• Easy_lab 3 is available
• Don’t forget the first homework (LLM-powered command line helper)

Reminder

